

APIJ

Nouvel établissement pénitentiaire – Zone Artisanale de Chapeau Rouge – 56000 Vannes

Interprétation des résultats d'analyses

Rapport

Réf: CSSPLB213222 / RSSPLB13797 -01

FJT / LOD / INH

29/06/2022

GINGER BURGEAP Agence Loire-Bretagne • ZAC des hauts de Couëron 3 • 24 quater rue Jan Palach44220 COUERON Tél. 33 (0) 2 40 38 67 06 • burgeap.nantes@groupeginger.com

SIGNALETIQUE

CLIENT

RAISON SOCIALE	APIJ
COORDONNÉES	67 avenue de Fontainebleau • 94270 Le Kremlin-Bicêtre
INTERLOCUTEUR	Sophie MARTEL
(nom et coordonnées)	Tel: 01 88 28 89 48 / 06 01 27 15 59 • sophie.martel@apij-justice.fr

GINGER BURGEAP

ENTITE EN CHARGE DU DOSSIER	GINGER BURGEAP Agence Loire-Bretagne 9, rue du Chêne Lassé – 44800 Saint-Herblain Cedex Tél. 33 (0) 2 40 38 67 06 • burgeap.nantes@groupeginger.com
CHEF DU PROJET	Lotfi DRIDI Tél. 06 32 36 60 60 • I.dridi@groupeginger.com
COORDONNÉES Siège Social	Siège Social
SAS au capital de 1 200 000 euros dirigée par Claude MICHELOT SIRET 682 008 222 000 79 / RCS Nanterre B 682 008 222/ Code APE 7112B / CB BNP Neuilly – S/S 30004 01925 00010066129 29	143, avenue de Verdun • 92442 ISSY LES MOULINEAUX Tél : 01.46.10.25.70 • E-mail : burgeap@groupeginger.com

RAPPORT

Offre de référence	Accord cadre n°21-021 BC09 – mission P1-C-(site strictement supérieur à 10 ha) PSSPLB17537
Numéro et date de la commande	Commande n°KGP3L0018-S du 30/11/2021 (par l'intermédiaire de GINGER CEBTP)
Numéro de contrat / de rapport :	Réf : CSSPLB213222 / RSSPLB13797 -01
Numéro d'affaire :	A58556
Domaine technique :	SP01

SIGNATAIRES

DATE	Indice	Rédaction Nom / signature	Vérification Nom / signature	Supervision / validation Nom / signature
29/06/2022	01	F. JANNET	L. DRIDI	I. HAMON

SOMMAIRE

Synt 1.		echnique4 uction6	
	1.1 1.2 1.3 1.4	Objet de l'étude 6 Documents de référence 6 Projet d'aménagement 6 Historique succinct 7	
2.	Prései	ntation des résultats GEOTEC9	
	2.1	Investigations sur les sols (mars 2022)92.1.1 Programme de reconnaissance92.1.2 Résultats d'analyses9	
	2.2	Investigations sur les eaux souterraines (avril 2022)132.2.1 Programme de reconnaissance132.2.2 Résultats d'analyses13	
3.	Interp	rétation GINGER BURGEAP15	
	3.1	Valeurs de référence153.1.1 Valeurs de référence pour les sols153.1.2 Valeurs de référence pour les eaux souterraines15	
	3.2 3.3 3.4	Interprétation des analyses sur les sols	
4. 5. 6.	Synth	na conceptuel	
FIG	URE	ES .	
Figure Figure	e 2 : Activ e 3 : Loca	et d'aménagement (Source : APIJ)	8
TA	BLE	AUX	
Table Table	au 2 : An au 3 : Ta	cuments analysés alyses réalisées sur les sols bleau des résultats sur les sols 1/2 (source : GEOTEC) bleau des résultats sur les sols 2/2 (source : GEOTEC)	6 9 11 12
Table	au 5 : Niv	veaux piézométriques mesurés bleau des résultats des eaux souterraines (source : GEOTEC)	13 14

Synthèse technique

	CON	ITEXTE						
Client	APIJ							
Nom / adresse du site	Nouvel établissement pénitentiaire – Zone Artisanale de Chapeau Rouge – 56000 Vannes							
Contexte de l'étude	Réalisation d'un nouvel établissement pénitentiaire.							
Projet d'aménagement	Construction d'un établissement pénitentaire de 550 places sans niveau de sous-sol, au nombre d'étages inconnu et comprenant également des bâtiments annexes, des espaces verts et des voies carrossables.							
	Superficie totale	Environ 15,4 ha						
	Propriétaire	Ville de Vannes						
	Exploitant et usage actuel	Absence d'usage (prairies et zones arborées)						
	Environnement proche	 Nord: RN166 puis prairies et lotissement de Tréalvé; Sud: parcelles boisées (sylviculture) et cultivées (agriculture), présence du Lieu-dit Kernaval (maisons d'habitations avec jardins privatifs et corps de ferme) Est: Prairies et zones arborées; Ouest: Quartier résidentiel de Chapeau Rouge et Zone Artisanale de Chapeau Rouge (magasins de gros, hôtels, concessionnaires de poids-lourds, etc.) 						
Informations sur le site lui-même	Historique connu	La zone d'étude a essentiellement été exploitée pour un usage agricole (prairie et/ou culture) entre 1932 et aujourd'hui. Quelques activités potentiellement polluantes ont néanmoins été recensées au droit du site : • La présence de bidons/futs sans rétention dont le contenu n'est pas connu et stocké à proximité du hangar agricole (seule zone bâtie du site) localisé en partie sud (parcelle BD n°228). Un vieux châssis de voiture ou engin agricole a été identifié dans ce secteur ; • La présence d'une zone de dépôt de déchet de démolition (béton, ferraille) en partie Est du site (parcelles BD n°73 et 138) ; • La présence d'une zone remaniée en lien avec la construction de la nationale 166 en partie nord (parcelle BD n°134). Compte tenu de la topographie actuelle, il est probable que le site a été décaissé.						
	Géologie	 Terre végétale sur 0,1 à 0,5 m d'épaisseur ; Substratum granitique au-delà. 						
Contexte géologique et hydrogéologique	Hydrogéologie	Présence de 2 compartiments aquifère : nappe superficielle rencontrée dans les altérites du soc granitique. Cette nappe est alimentée par les eaux de plu et son sens d'écoulement est généralement lié à topographie (vers le sud-ouest au droit du site). Le nivea des eaux souterraines dans cette nappe est attendu faible profondeur (niveaux mesurés entre 2 et 7,5 m); nappe du socle rencontrée dans les fractures et fissure des formations granitiques. Il s'agit d'une napp discontinue dont l'extension se limite à la faveur des axe principaux de fracturation.						
Études	antérieures	 Étude historique et documentaire - CSSPLB213222 / RSSPLB13147-01 – 01/02/2022 – GINGER BURGEAP Diagnostic de l'état des milieux - Mission DIAG - Rapport n°2022/01104/NANTS/02 du 02/06/2022 - GEOTEC 						

MISSION							
Intitulé et objectifs	Interpréter les résultats obtenu	us par la société GEOTEC vis-à-vis du projet.					
Investigations réalisées par GEOTEC	Sols	Réalisation de 11 sondages le 17 mars 2022 : 10 sondages au carottier (C1 à C10) jusqu'à des profondeurs comprises entre 0,6 et 2 m de profondeur (refus sur socle granitique pour 6 sondages); un sondage à 0,2 m de profondeur à la tarière manuelle.					
	Eaux souterraines	 Prélèvement le 11/04/2022 dans les 3 piézomètres posés dans le cadre de l'étude de suivi piézométrique que réalise GEOTEC référencée 2022/01104/NANTS/01 (Pz3, Pz4 et Pz5). 					
	Sols	19 analyses de type Pack ISDI + 8 métaux + COHV.					
Polluants recherchés	Eaux souterraines	3 analyses en HCT C10-C40, HAP, COHV, BTEX et 8 métaux.					
Résultats des investigations	Qualité du sous-sol et impacts identifiés	Présence d'anomalies ponctuelles en métaux (dépassements des valeurs de bruit de fond pour l'arsenic, le chrome, le cuivre et le zinc) et de traces de HCT C10-C40, HAP et PCB ponctuellement. Les anomalies sont principalement retrouvées dans les arènes granitiques, recouvertes de terres végétale sans anomalie; Absence de dépassements des seuils d'acceptation en ISDI (valeurs de l'arrêté du 12/12/2014). Eaux souterraines Présence d'anomalies en métaux (chrome, nickel et plomb) et de traces d'hydrocarbures (fractions lourdes peu ou pas volatiles) en amont et en aval (PZ5 et PZ4);					
	Schéma conceptuel	 Impacts identifiés: Absence d'impact. Uniquement présence d'anomalies en métaux et hydrocarbures dans les sols et la nappe; Enjeux à protéger: Futurs travailleurs et détenus (adultes) Des visiteurs adultes et enfant peuvent aussi être présents sur site occasionnellement; Voies d'expositions: Absence de voies de transfert de donc de voies d'exposition (recouvrement des anomalies dans les sols par de la terre végétale dans anomalie en place et absence d'usage des eaux souterraines). 					
	RECOMMAI	NDATIONS					
Conséquences sur le projet / recommandations	Absence de recommandations particulières autre que : • pour les sols : en cas d'évacuation hors site des matériaux excavés, or pourront être acheminés vers une ISDI ou valorisés sur site par réemplo besoin de remblais ;						

1. Introduction

1.1 Objet de l'étude

Dans le cadre du marché d'Assistance à Maîtrise d'Ouvrage « Études de sol » de l'APIJ, dont GINGER CEBTP est mandataire et a en charge l'encadrement des investigations et la réalisation des études géotechniques, GINGER BURGEAP a en charge la partie environnementale en tant que co-traitant.

Dans le cadre du projet de construction d'un nouvel établissement pénitentiaire d'une capacité de 550 places à proximité de la Zone Artisanale de Chapeau Rouge au nord-est de Vannes (56), GINGER BURGEAP a ainsi réalisé :

- une étude historique, documentaire et de vulnérabilité ayant conclu sur la nécessité de procéder à un programme d'investigations,
- la réalisation d'un cahier des charges techniques en vue de la consultation par l'APIJ de prestataires spécialisés,
- l'analyse des offres consécutives à la consultation,
- l'analyse de conformité du rapport remis par le prestataire retenu.

Le diagnostic de la société GEOTEC a été réceptionné par GINGER BURGEAP le 3 juin 2022.

L'objet du présent rapport est de présenter l'interprétation des résultats obtenus par la société GEOTEC vis-à-vis du projet.

1.2 Documents de référence

Tableau 1 : Documents analysés

Entreprise	Référence du rapport
GEOTEC	Rapport n°2022/01104/NANTS/02 du 02/06/2022
GEOTEC	Diagnostic de l'état des milieux - Mission DIAG

1.3 Projet d'aménagement

D'après les informations fournies, le projet prévoit la construction d'un établissement pénitentiaire de 550 places sans niveau de sous-sol.

Des bâtiments annexes seront également présents ainsi que des espaces verts et des voies carrossables.

Le projet d'aménagement est présenté en Figure 1.

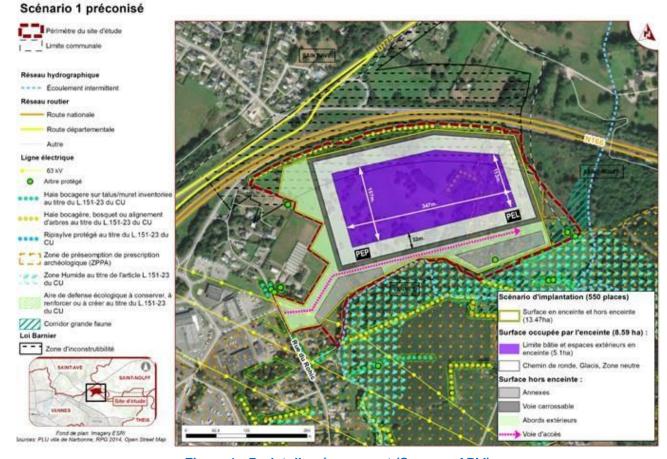


Figure 1 : Projet d'aménagement (Source : APIJ)

1.4 Historique succinct

D'après l'étude historique réalisée, le site a été exploité à des fins agricoles (prairie et/ou parcelles cultivées) au moins à partir de 1932 jusqu'en 2004. Un hangar agricole a été construit en partie sud du site à la fin des années 1970. Ce hangar est toujours présent sur site. Des bidons (contenant inconnu) sont stockés à l'extérieur du hangar.

La partie est du site (parcelles 73 et 138) a fait l'objet de dépôts divers en 2004 et notamment de déchets de démolition (béton, terre, parfois ferraille), dont l'origine n'est pas connue. Depuis, la végétation a repris dans ces secteurs, qui sont aujourd'hui peu accessibles (roncier et/ou végétation parfois dense).

Par ailleurs, la partie nord du site semble avoir été remaniée (décaissement ou remblaiement) pour les besoins de la construction de la nationale 166 qui la borde.

Les activités potentiellement polluantes identifiées sont localisées en Figure 2.

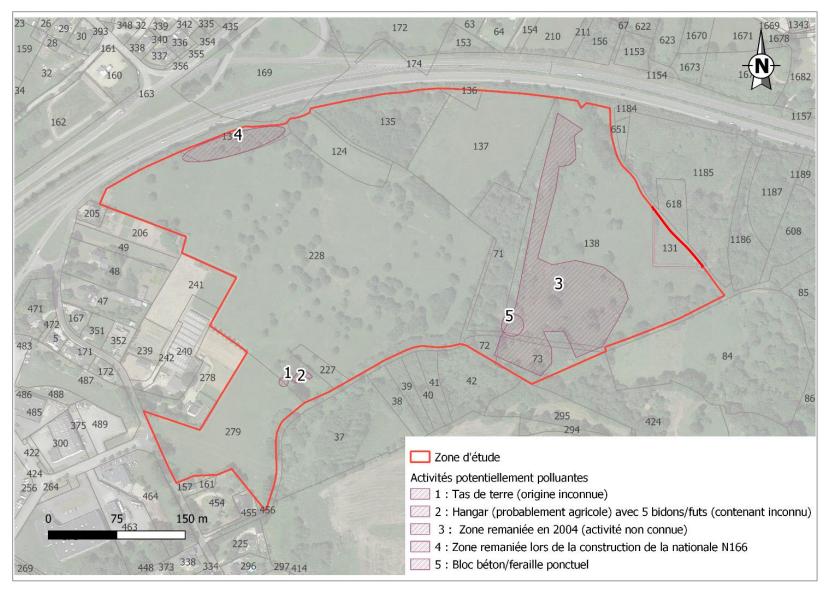


Figure 2 : Activités potentiellement polluantes recensées au droit du site

Page 8/20

2. Présentation des résultats GEOTEC

2.1 Investigations sur les sols (mars 2022)

2.1.1 Programme de reconnaissance

Un total de 11 sondages de sol a été réalisé le 17 mars 2022 :

- 10 sondages au carottier sous gaine (C1 à C10) jusqu'à des profondeurs comprises entre 0,6 et 2 m de profondeur (refus sur socle granitique pour 6 sondages) ;
- 1 sondage à la tarière manuelle (TM1) jusqu'à 0,2 m de profondeur dans le tas de terre.

Ces sondages sont localisés sur la Figure 3.

Tous les sondages ont fait l'objet de prélèvements pour analyses. Un total de 19 échantillons a été prélevé (soit un à trois échantillons au droit de chaque sondage).

Les analyses réalisées sur les échantillons de sols sont précisées dans le Tableau 2.

Tableau 2 : Analyses réalisées sur les sols

Pack analytique	Quantité	Objectif
Pack ISDI + 8 métaux + COHV	19	Connaître la qualité des sols au droit des sources potentielles de pollution recensées et le caractère inerte ou non des terres potentiellement à excaver dans le cadre du projet d'aménagement

- 8 métaux = arsenic, cadmium, chrome, cuivre, nickel, plomb, zinc, mercure
- COHV = composés organo-halogénés volatils (13)
- Pack ISDI conformément à l'arrêté du 12/12/2014 incluant :
 - a) sur sol brut : matière sèche, hydrocarbures C10-C40, hydrocarbures aromatiques polycycliques (HAP), hydrocarbures aromatiques monocycliques (BTEX), polychlorobiphényles (PCB), carbone organique total (COT), test de lixiviation EN 12457-2 (L/S = 10, 1x 24h)
 - b) sur éluat : métaux et métalloïdes (As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, Zn), chlorures, fluorures, sulfates, indice phénol, carbone organique total (COT), fraction soluble

2.1.2 Résultats d'analyses

Les Tableau 3 et Tableau 4 présentent les résultats obtenus par GEOTEC sur les sols.

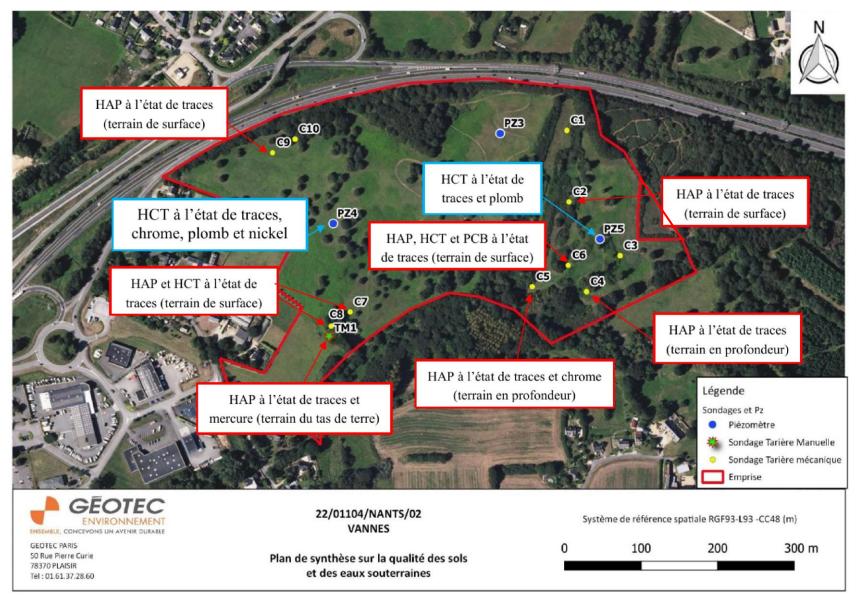


Figure 3 : Localisation des investigations et synthèse des résultats sur les sols et les eaux souterraines (source : GEOTEC)

Tableau 3 : Tableau des résultats sur les sols 1/2 (source : GEOTEC)

paramètre	Unité	seuils ISDI	RMQS Maille 775 (0-0,3) - (0,3- 0,5)	Terre végétalisée limoneuse marron	C1 (0.3-0.8) Arène limoneuse granitique marron	Terre végétalisée limoneuse marron			C4 (0.3-1) Arène limoneuse granitique marron		, ,	Terre végétalisée limoneuse marron	C6 (0.4-1) Arène limoneuse granitique marron rouge
сот	mg/kg MS	30000		16000	2400	30000	8300	3700	26000	2100	5000	40000	29000
pH (KCI)				4.2	4.6	4.2	5.3	5.2	4.1	4.5	4.5	5.2	4.6
METAUX													
arsenic cadmium	mg/kg MS mg/kg MS		34,71 / - 0,34 / 0,17	5.6	5.4 <0.2	7.3 <0.2	7.4 <0.2	7.9 <0.2	<0.2	37 <0.2	12	8.8 <0.2	8.0 <0.2
chrome	mg/kg MS		158,88 / 161,55	13		14	74	52	20			18	
cuivre	mg/kg MS mg/kg MS		63,97 / 72,67 0,09 / -	5.4 <0.05	2.8 <0.05	7.8 <0.05	<0.05	3.9 <0.05	0.06	23 <0.05	20 <0.05	0.06	4.1 0.06
plomb	mg/kg MS		79,35 / 55,25	14		16	13	11	26	26		34	10
nickel zinc	mg/kg MS mg/kg MS		38,62 / 43,92 194,55 / 198,35	6.8		6.6 40	16 75	9.6 57	9.5 63	10.0 110	36 85	8.8	10 92
COMPOSES AROMATIQUES VOLATIL	1			-0.00	-0.00	<0.02	-0.00	×0.00	-0.00	-0.00	-0.00	×0.00	-0.00
benzène toluène	mg/kg MS mg/kg MS			<0.02 <0.02	<0.02	<0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02
éthylbenzène orthoxylène	mg/kg MS			<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02
para- et métaxylène	mg/kg MS mg/kg MS			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
xylènes BTEX totaux	mg/kg MS mg/kg MS	6		<0.04 <0.10	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04 <0.10	<0.04	<0.04 <0.10	<0.04
naphtalène	mg/kg MS	, and the same of		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
HYDROCARBURES AROMATIQUES PO acénaphtylène	mg/kg MS			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
acénaphtène	mg/kg MS			<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01
fluorène phénanthrène	mg/kg MS mg/kg MS			<0.01 <0.01	<0.01	<0.01	<0.01	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01
anthracène	mg/kg MS			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
fluoranthène	mg/kg MS mg/kg MS			<0.01 <0.01	<0.01 <0.01	0.01	0.01 <0.01	<0.01 <0.01	0.02	0.01 <0.01	0.01 <0.01	0.04	<0.01
benzo(a)anthracène	mg/kg MS			<0.01	<0.01	<0.01	<0.01	< 0.01	0.01	<0.01	<0.01	0.02	<0.01
chrysène benzo(b)fluoranthène	mg/kg MS mg/kg MS			<0.01 <0.01	<0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01	0.01 <0.01	<0.01	0.02	<0.01
benzo(k)fluoranthène	mg/kg MS			<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	0.02	<0.01
benzo(a)pyrène dibenzo(ah)anthracène	mg/kg MS mg/kg MS			<0.01 <0.01	<0.01	<0.01 <0.01	<0.01	<0.01 <0.01	0.01 <0.01	<0.01 <0.01	<0.01 <0.01	0.02 <0.01	<0.01
benzo(ghi)pérylène	mg/kg MS			<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	0.03	<0.01
indéno(1,2,3-cd)pyrène somme de HAP-15 et naphtalène (volatil)	mg/kg MS mg/kg MS	50		<0.01 <0.20	<0.01	<0.01 <0.20	<0.01	<0.01 <0.20	0.01 <0.20	<0.01 <0.20	<0.01	0.02 0.24	<0.01 <0.20
COMPOSES ORGANO HALOGENES VO	LATILS			-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
tétrachloroéthylène trichloroéthylène	mg/kg MS mg/kg MS			<0.02 <0.02	<0.02	<0.02 <0.02	<0.02	<0.02	<0.02	<0.02 <0.02	<0.02	<0.02	<0.02
1,1-dichloroéthène cis-1,2-dichloroéthène	mg/kg MS mg/kg MS			<0.02 <0.03	<0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.03	<0.02
trans-1,2-dichloroéthylène	mg/kg MS			<0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.03
totaux (cis,trans) 1,2-dichloroéthènes chlorure de vinyle	mg/kg MS mg/kg MS			<0.05 <0.02	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04 <0.02	<0.04	<0.05 <0.02	<0.05 <0.02
1,1,1-trichloroéthane	mg/kg MS			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
1,2-dichloroéthane tétrachlorométhane	mg/kg MS mg/kg MS			<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02	<0.02 <0.02	<0.02 <0.02
chloroforme	mg/kg MS			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
1,2-dichloropropane dichlorométhane	mg/kg MS mg/kg MS			<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02
trans-1,3-dichloropropène	mg/kg MS			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
cis-1,3-dichloropropène bromoforme	mg/kg MS mg/kg MS			<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02
hexachlorobutadiène	mg/kg MS			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
POLYCHLOROBIPHENYLS (PCB) PCB 28	μg/kg MS			<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
PCB 52	μg/kg MS			<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
PCB 101 PCB 118	µg/kg MS µg/kg MS			<1	<1	<1	<1	<1	<1	<1	<1	1.9 1.9	<1
PCB 138 PCB 153	μg/kg MS			<1	<1	<1	<1	<1	<1	<1	<1	1.9	<1
PCB 180	µg/kg MS µg/kg MS			<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
PCB totaux (7) HYDROCARBURES TOTAUX	μg/kg MS	1000		<7	<7	<7	<7	<7	<7	<7	<7	8.0	<7
fraction C10-C12	mg/kg MS			<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
fraction C12-C16 fraction C16-C21	mg/kg MS mg/kg MS			<10 <15	<10 <15	<10 <15	<10 <15	<10 <15	<10 <15	<10 <15	<10 <15	<10 <15	<10 <15
fraction C21-C35	mg/kg MS			<10	<10	<10	<10	<10	<10	<10	<10	19	<10
fraction C35-C40 hydrocarbures totaux C10-C40	mg/kg MS mg/kg MS	500		<15 <20	<15 <20	<15 <20	<15 <20	<15 <20	<15 <20	<15 <20	<15 <20	<15 26	<15 <20
LIXIVIATION Lixiviation 24h - NF-EN-12457-2													
Lixiviation 24h - NF-EN-12457-2 date de lancement			23-	03-2022 00:00:00	03-2022 00:00:00	# 03-2022 00:00:00	03-2022 00:00:00	# 03-2022 00:00:00	03-2022 00:00:00	# 03-2022 00:00:00	# 03-2022 00:00:00	# 03-2022 00:00:00	03-2022 00:00:00
L/S pH final ap. lix.	ml/g			10.00 5.7	9.99 6.2	9.99 5.8	10.00	10.00 6.6	10.00	10.00	10.01	10.01 6.4	9.99
pH final ap. lix. température pour mes. pH	°C			19.8	20	20.4	20	19.8	20.6	20.9	19.4	19.4	19.7
conductivité (25°C) ap. lix.	μS/cm			7	5	11	26.8	22	11	9	4	24	16
COD, COT sur éluat	mg/kg MS	500		53	9.9	71	50	29	70	26	19	100	110
ELUAT METAUX antimoine	mg/kg MS	0.06		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
arsenic	mg/kg MS	0.5		< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01
baryum cadmium	mg/kg MS mg/kg MS	0.04		<0.05 <0.002	<0.05 <0.002	<0.05 <0.002	<0.05 <0.002	<0.05 <0.002	<0.05 <0.002	<0.05 <0.002	<0.05 <0.002	<0.05 <0.002	<0.05 <0.002
chrome	mg/kg MS	0.5		< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01
cuivre mercure	mg/kg MS mg/kg MS	0.01		0.03 <0.0005	<0.02 <0.0005	0.09 <0.0005	0.04 <0.0005	0.03 <0.0005	0.03 <0.0005	<0.02 <0.0005	<0.02 <0.0005	0.09 <0.0005	0.06 <0.0005
plomb	mg/kg MS	0.5		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	<0.02
molybdène nickel	mg/kg MS mg/kg MS			<0.02 <0.03	<0.02	<0.02 <0.03	<0.02 <0.03	<0.02 <0.03	<0.02 <0.03	<0.02 <0.03	<0.02 <0.03	<0.02 <0.03	<0.02
sélénium	mg/kg MS	0.1		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02
ZINC ELUAT COMPOSES INORGANIQUES	mg/kg MS	4		<0.1	<0.1	0.16	<0.1	<0.1	<0.1	<0.1	<0.1	0.11	<0.1
fraction soluble	mg/kg MS	4000		<500	<500	<500	<500	<500	<500	<500	<500	<500	<500
ELUAT PHENOLS Indice phénol	mg/kg MS	1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
ELUAT DIVERSES ANALYSES CHIMIQU	JES												
fluorures chlorures		800		<2	<2	<2 <10	<2	<2 <10	<2	<2 <10	<2 <10	<2	<10
sulfate	mg/kg MS	1000		<10	11	<10	36	35	<10	20	<10	<10	11

Tableau 4 : Tableau des résultats sur les sols 2/2 (source : GEOTEC)

paramètre	Unité	seuils ISDI		C7 (0-0.3)	C8 (0-0.5)	C8 (0.5-1.3)	C8 (1.3-2)	C9 (0-0.3)	C9 (1-2)	C10 (0.3-1)	C10 (1.5-2)	TM1 (0-0.2)
,			RMQS Maille 775	Terre végétalisée	Terre végétalisée	Arène limoneuse granitique et	Arène limoneuse granitique et	Terre végétalisée	Arène limoneuse	Arène limoneuse	Arène limoneuse	Terre végétalisée
			(0-0,3) - (0,3- (0,5)	limoneuse marron	limoneuse marron	schiste marron rouge gris	schiste marron rouge gris	limoneuse marron	granitique marron gris	granitique marron gris	granitique marron gris	limoneuse marron
			0,3)									
METAUX	mg/kg MS	30000		32000	19000	<2000	<2000	13000	<2000	<2000	<2000	19000
arsenic			34,71 / -	9.0	8.0	5.7			8.5	11	7.6	7.0
cadmiun			0,34 / 0,17 158,88 / 161,55	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
cuivre			63,97 / 72,67	12	11	5.7		7.3	11	45	35	11
mercure			0,09 / - 79,35 / 55,25	0.06	0.06	<0.05 <10	<0.05	<0.05	<0.05	<0.05	<0.05 <10	0.10 46
plomb			38,62 / 43,92	13	8.4	14		6.8	10.0	8.9	11	5.5
zinc	mg/kg MS		194,55 / 198,35	79	59	120	140	42	110	94	99	41
COMPOSES AROMATIQUES VOLATILS benzène	mg/kg MS			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
toluène				<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
éthylbenzène				<0.02 <0.02	<0.02 <0.02	<0.02	<0.02	<0.02 <0.02	<0.02 <0.02	<0.02	<0.02 <0.02	<0.02 <0.02
orthoxylène para- et métaxylène				<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
xylènes	mg/kg MS			<0.04	<0.04	<0.04	< 0.04	<0.04	< 0.04	< 0.04	<0.04	< 0.04
BTEX totaux naphtalène	mg/kg MS mg/kg MS			<0.10 <0.05	<0.10 <0.05	<0.10 <0.05	<0.10 <0.05	<0.10 <0.05	<0.10 <0.05	<0.10 <0.05	<0.10 <0.05	<0.10 <0.05
HYDROCARBURES AROMATIQUES POLYC	YCLIQUES											
acénaphtylène acénaphtène				<0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01	<0.01	<0.01 <0.01
fluorène				<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
phénanthrène				0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	80.0
anthracène fluoranthène				<0.01 0.04	<0.01 0.02	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	0.02 0.20
pyrène	mg/kg MS			0.03	0.02	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.18
benzo(a)anthracène chrysène				0.02	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.09
benzo(b)fluoranthène	mg/kg MS			0.03	0.02	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	0.12
benzo(k)fluoranthène				0.01	<0.01	<0.01	<0.01	<0.01	<0.01 <0.01	<0.01	<0.01	0.06 0.12
benzo(a)pyrène dibenzo(ah)anthracène				<0.01	0.01 <0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.12
benzo(ghi)pérylène				0.03	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.10
indéno(1,2,3-cd)pyrène somme de HAP-15 et naphtalène (volatil)		50		0.02	0.01 <0.20	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.08
COMPOSES ORGANO HALOGENES VOLA	TILS											
tétrachloroéthylène trichloroéthylène				<0.02 <0.02	<0.02 <0.02	<0.02	<0.02	<0.02	<0.02 <0.02	<0.02	<0.02 <0.02	<0.02
1,1-dichloroéthène				<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
cis-1,2-dichloroéthène				<0.03	<0.02	<0.02	<0.02	<0.03	<0.02	<0.02	<0.02	<0.02
trans-1,2-dichloroéthylène totaux (cis,trans) 1,2-dichloroéthènes				<0.02 <0.05	<0.02	<0.02 <0.04	<0.02	<0.02 <0.05	<0.02	<0.02	<0.02	<0.02
chlorure de vinyle	mg/kg MS			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
1,1,1-trichloroéthane 1,2-dichloroéthane				<0.02	<0.02 <0.02	<0.02 <0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
tétrachlorométhane				<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
chloroforme				<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
1,2-dichloropropane dichlorométhane				<0.02	<0.02 <0.02	<0.02	<0.02	<0.02	<0.02 <0.02	<0.02	<0.02 <0.02	<0.02
trans-1,3-dichloropropène	mg/kg MS			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
cis-1,3-dichloropropène				<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
hexachlorobutadiène				<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
POLYCHLOROBIPHENYLS (PCB)				<1	<1	<1	<1	<1	<1	<1	<1	<1
PCB 28				<1	<1	<1	<1	<1	<1	<1	<1	<1
PCB 101				<1	<1	<1	<1	<1	<1	<1	<1	<1
PCB 118				<1	<1	<1	<1	<1	<1	<1	<1	<1
PCB 153	100			<1	<1	<1	<1	<1	<1	<1	<1	<1
PCB 180		1000		<1	<1	<1	<1	<1	<1	<7	<1	<1
HYDROCARBURES TOTAUX	pg/kg lvio	1000			7				~/			-/-
fraction C10-C12				<5	<5	<5	<5	<5	<5	<5	<5	<5
fraction C12-C16	mg/kg MS mg/kg MS			<10 <15	<10 <15	<10 <15	<10 <15	<10 <15	<10 <15	<10 <15	<10 <15	<10 <15
fraction C21-C35	mg/kg MS			13	19	<10	<10	<10	<10	<10	<10	<10
fraction C35-C40 hydrocarbures totaux C10-C40		500		<15 <20	<15 21	<15 <20	<15 <20	<15 <20	<15 <20	<15 <20	<15 <20	<15 <20
LIXIVIATION		550			21		-20			-20		-10-0
Lixiviation 24h - NF-EN-12457-2 date de lancemen			22	03-2022 00:00:00	03-2022 00:00:00	03-2022 00-00-20	03-2022 00-00-00	03-2022 00:00:00	# 03-2022 00:00:00	# 03-2022 00:00:00	# 03-2022 00:00:00	# 03-2022 00:00:00
L/S			23-	10.00	10.00	10.00		9.99	10.00	10.00	9.99	10.00
pH final ap. lix				5.8	5.7	6.3		6.1	6.4	6.2	6.5	6.2
température pour mes. ph conductivité (25°C) ap. lix	· PS/cm			19.3 12	19.4 23	19.5 12		19.5 10	19.3 11	19.3 15	19.7 20.9	19.9 16
ELUAT COT												
COD, COT sur élua ELUAT METAUX	t mg/kg MS	500		73	95	5.4	<5	35	7.4	16	<5	72
antimoine	mg/kg MS	0.06		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
arsenic		0.5		<0.01	<0.01	<0.01	<0.01 <0.05	<0.01	<0.01	<0.01	<0.01	0.01
baryun		0.04		<0.05 <0.002	<0.05 0.004	<0.05 <0.002	<0.05	<0.05 <0.002	<0.05 <0.002	<0.05 <0.002	<0.05 <0.002	<0.05 <0.002
chrome	mg/kg MS	0.5		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
cuivre	-	0.01		0.06 <0.0005	0.10 <0.0005	<0.02 <0.0005	<0.02 <0.0005	0.04 <0.0005	<0.02 <0.0005	<0.02 <0.0005	<0.02 <0.0005	0.08 <0.0005
plomb	mg/kg MS	0.5		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
molybdène		0.5		<0.02	<0.02 <0.03	<0.02	<0.02	<0.02	<0.02 <0.03	<0.02	<0.02 <0.03	<0.02 <0.03
nicke séléniun		0.4		<0.03 <0.02	<0.03 <0.02	<0.03 <0.02	<0.03	<0.03 <0.02	<0.03	<0.03 <0.02	<0.03 <0.02	<0.03 <0.02
zinc				0.16	0.28	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
ELUAT COMPOSES INORGANIQUES fraction soluble	mg/kg MS	4000		520	<500	<500	<500	<500	<500	880	<500	<500
ELUAT PHENOLS												
Indice phéno		1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
ELUAT DIVERSES ANALYSES CHIMIQUES fluorures		10		<2	<2	<2	<2	<2	<2	<2	<2	<2
chlorures	mg/kg MS	800		<10	27	14			<10	18		<10
sulfate	mg/kg MS	1000		<10	<10	25	43	<10	19	30	25	20

Amont

2.2 Investigations sur les eaux souterraines (avril 2022)

Programme de reconnaissance 2.2.1

Au total, 3 piézomètres d'une profondeur de 10 m sont présents au droit du site (Pz3 à Pz5). Ils ont été mis en place dans le cadre de la NPHE réalisé au droit du site. Ils sont localisés sur la Figure 3.

Les ouvrages ont été prélevés le 11 avril 2022 par GEOTEC. Les niveaux piézométriques mesurés lors des prélèvements sont présentés dans le **Tableau 5**. Ces niveaux semblent indiquer un écoulement de la nappe vers le sud-ouest.

Les échantillons prélevés ont fait l'objet d'analyse en HCT C10-C40, HAP, COHV, BTEX et 8 métaux et métalloïdes.

Date du Niveau statique par **Position** Cote du repère Cote de la nappe Piézomètre prélèvement (m NGF) rapport au sol (m) (m NGF) hydraulique 11/04/2022 20,05 27,45 7,40 Amont Pz3 11/04/2022 Pz4 20,70 2,77 17,93 Aval 11/04/2022 4,85 22,55

Tableau 5 : Niveaux piézométriques mesurés

2.2.2 Résultats d'analyses

Pz5

Le **Tableau 6** présente les résultats obtenus par GEOTEC sur les eaux souterraines.

27,40

Tableau 6 : Tableau des résultats des eaux souterraines (source : GEOTEC)

paramètre	Unité	consomm	ité des eaux de ation (μg/l)	PZ5	PZ4	PZ3	
		Annexe II AM du 11/01/2007	OMS 1994 mis à jour en 2006				
METAUX	•					·	
arsenic	µg/l	100	10	13	20	2,9	
cadmium	μg/l	5	3	0,22	0,42	<0,2	
chrome	µg/l	50	50	11	57	1,9	
cuivre	μg/l	-	2000	27	48	2,4	
mercure	μg/l	1	6	0,07	<0,05	<0,05	
plomb	μg/l	50	10	28	40	3,7	
nickel	μg/l	-	70	11	76	<3	
zinc	µg/l	5000	3000	95	230	26	
COMPOSES AROMATIQUES VO							
benzène	µg/l		10	<0,2	<0,2	<0,2	
toluène	µg/l		700	<0,2	<0,2	<0,2	
éthylbenzène	µg/l		300	<0,2	<0,2	<0,2	
orthoxylène	μg/l			<0,2	<0,2	<0,2	
			500				
para- et métaxylène	μg/l			<0,2	<0,2	<0,2	
xylènes	μg/l			<0,40	<0,40	<0,40	
BTEX totaux	µg/l		•	<1,0	<1,0	<1,0	
HYDROCARBURES AROMATIQ				-0.4		1.6.4	
naphtalène	µg/l	•	-	<0,1	<0,1	<0,1	
acénaphtylène	µg/l	•	•	<0,1	<0,1	<0,1	
acénaphtène	μg/l	-	-	<0,1	<0,1	<0,1	
fluorène	μg/l	-	-	<0,05	<0,05	<0,05	
phénanthrène	μg/l	•	-	<0,02	<0,02	<0,02	
anthracène	μg/l	-	-	<0,02	<0,02	<0,02	
fluoranthène	μg/l	1*	-	<0,02	<0,02	<0,02	
pyrène	μg/l	-	-	<0,02	<0,02	<0,02	
benzo(a)anthracène	μg/l		-	<0,02	<0,02	<0,02	
chrysène	μg/l	-	-	<0,02	<0,02	<0,02	
benzo(b)fluoranthène	μg/l	1*	-	<0,02	<0,02	<0,02	
benzo(k)fluoranthène	µg/l	1*	-	<0,01	<0,01	<0,01	
benzo(a)pyrène	μg/l	1*		<0,01	<0,01	<0,01	
dibenzo(ah)anthracène	μg/l			<0,02	<0,02	<0,02	
benzo(ghi)pérylène	µg/l	1*		<0,02	<0,02	<0,02	
indéno(1,2,3-cd)pyrène	μg/l	1*		<0.02	<0,02	<0.02	
Somme des HAP (10) VROM	μg/l			<0,3	<0,3	<0,3	
Somme des HAP (16) - EPA	μg/l			<0,57	<0,57	<0,57	
COMPOSES ORGANO HALOGE				-0,07	-0,07	-0,07	
			-	-0.4	<0,1	-0.4	
tétrachloroéthylène	µg/l			<0,1		<0,1	
trichloroéthylène	μg/l			<0,1	<0,1	<0,1	
1,1-dichloroéthène	µg/l	•	•	<0,5	<0,5	<0,5	
cis-1,2-dichloroéthène	μg/l		•	<0,1	<0,1	<0,1	
trans-1,2-dichloroéthylène	μg/l	•	•	<0,1	<0,1	<0,1	
chlorure de vinyle	µg/l	•	-	<0,2	<0,2	<0,2	
1,1,1-trichloroéthane	µg/l		4	<0,1	<0,1	<0,1	
1,2-dichloroéthane	µg/l	•	30	<0,1	<0,1	<0,1	
tétrachlorométhane	μg/l	•		<0,1	<0,1	<0,1	
chloroforme	μg/l	•	300	<0,1	<0,1	<0,1	
dichlorométhane	μg/l	•	20	<1	<1	<1	
1,2-dichloropropane	µg/l	-	40	<0,5	<0,5	<0,5	
rans-1,3-dichloropropène	μg/l	•	20	<0,5	<0,5	<0,5	
cis-1,3-dichloropropène	μg/l	•		<0,5	<0,5	<0,5	
bromoforme	μg/l	•	100	<0,5	<0,5	<0,5	
hexachlorobutadiène	µg/l	•	-	<0,5	<0,5	<0,5	
HYDROCARBURES TOTAUX							
fraction C10-C12	μg/l	•	-	<5	<5	<5	
fraction C12-C16	μg/l		-	<5	<5	<5	
fraction C16-C21	µg/l		-	20	7,1	<5	
fraction C21-C40	μg/l		-	110	190	<5	
	F-3"						

^{*} Somme des composés : Fluoranthène, Benzo(b)fluoranthène, Benzo(k)fluoranthène, Benzo(a)pyrène, Benzo(ghi)pérylène et Indéno(1,2,3-cd)pyrène

XXX	Valeur inférieure à la limite de quantification du laboratoire			
XXX	Valeur supérieure à la limite de quantification du laboratoire			
XXX	Valeur supérieure à l'AM du 11/01/2007			
XXX	Valeur supérieure à la limite OMS 2006			

3. Interprétation GINGER BURGEAP

3.1 Valeurs de référence

3.1.1 Valeurs de référence pour les sols

Conformément à la méthodologie en vigueur, les concentrations dans les sols sont comparées en premier lieu à des concentrations caractéristiques de bruit de fond régionaux ou propre à certains contextes (urbain, agricole...). Dans un second temps, l'ensemble des résultats obtenus est pris en compte pour évaluer le bruit de fond propre au site pour chaque famille de polluants et déterminer si le site présente des zones de pollution concentrée.

Métaux et métalloïdes sur sol brut	La gamme de concentrations utilisée pour comparaison est celle mise en évidence dans les sols naturels ordinaires (sans anomalie géochimique) dans le cadre du programme INRA-ASPITET. Pour le plomb, le Haut Conseil de Santé Publique (HCSP) mentionne une valeur de 300 mg (Pb)/kg sol, comme étant une valeur seuil entraînant un dépistage du saturnisme infantile. Un seuil de vigilance a également été établi à 100 mg/kg de plomb dans les sols. Ces valeurs sont des valeurs de gestion mais ne constituent pas la valeur du bruit de fond.		
НАР	En l'absence de données locales, les valeurs de référence utilisées sont issues de celles établies par l'ATSDR (Toxicological profile for PAHs, 1995 et 2005) pour des sols urbains.		
Autres composés	Pour les autres composés, en l'absence de valeurs caractérisant le bruit de fond, un simple constat de présence ou d'absence a été réalisé en référence à des teneurs supérieures ou inférieures aux limites de quantification du laboratoire.		
Gestion des déblais	Les concentrations sont comparées à titre indicatif aux critères d'acceptation définis dans l'arrêté du 12 décembre 2014 relatif aux déchets inertes.		

Les seules valeurs de référence prises en compte à la fois par GEOTEC et GINGER BURGEAP sont celles de l'arrêté du 12 décembre 2014 relatif aux déchets inertes.

Pour les métaux, GEOTEC a utilisé uniquement les données du RMQS alors que GINGER BURGEAP utilise :

- les données du programme national INRA-ASPITET ;
- les données du HCSP pour le plomb ;

Pour les HAP, GINGER BURGEAP utilise en plus les données de bruit de fond dans les sols urbains proposée par l'ATSDR pour les HAP.

3.1.2 Valeurs de référence pour les eaux souterraines

L'interprétation des résultats des analyses des eaux souterraines se basent sur des comparaisons avec les valeurs issues dans l'ordre suivant :

- des concentrations en polluants retrouvées dans les eaux prélevées entre l'amont et l'aval du site afin d'évaluer l'influence du site sur la qualité des eaux souterraines ;
- des annexes I et II de l'arrêté du 17 décembre 2008 modifié par arrêté du 23 juin 2016 relatif aux critères d'évaluation et aux modalités de détermination de l'état des eaux souterraines pris en application de la directive européenne 2006/118/CE sur la protection des eaux souterraines contre la pollution et la détérioration;
- de l'annexe II de l'arrêté du 11 janvier 2007 modifié par l'arrêté du 4 août 2017 relative aux limites de qualité des eaux brutes utilisées pour la production d'eau destinées à la consommation humaine ;
- de l'annexe I de l'arrêté du 11 janvier 2007 modifié par l'arrêté du 4 août 2017 qui spécifie les limites et références de qualité des eaux destinées à la consommation humaine ;
- des valeurs "guides" de l'OMS (Guidelines for drinking-water quality, fifth edition, 2017).

<u>Remarque</u>: La nappe phréatique n'est pas utilisée pour la production d'eau potable au droit et dans les environs du site. Les valeurs relatives à l'eau potable ou potabilisable ne sont donc utilisées qu'à titre de hiérarchisation des impacts identifiés.

Les valeurs de références prises en compte par GEOTEC et GINGER BURGEAP sont proches. GINGER BURGEAP utilise néanmoins en complément les valeurs de l'arrêté du 23 juin 2016 (dont certains seuils sont plus faibles que les valeurs proposées par GEOTEC) et les valeurs de l'annexe I de l'arrêté du 11 janvier 2007. En outre, les valeurs « guides » de l'OMS sont plus récentes (2017) que celles présentées par GEOTEC (2006).

3.2 Interprétation des analyses sur les sols

Sur sol brut

Métaux et métalloïdes

 Dépassements ponctuels du bruit de fond géochimique pour l'arsenic, le chrome, le cuivre et le zinc. Ces dépassements sont tous observés dans les arènes granitiques en profondeur. Aucune anomalie n'est identifiée dans la terre végétale de surface. En outre, les concentrations associées à ces anomalies sont majoritairement du même ordre de grandeur que les valeurs de bruit de fond considérées.

Composés organiques

- Présence de traces de HCT C10-C40, HAP et PCB, respectivement au droit de 3 échantillons, 10 échantillons et un échantillons sur les 19 échantillons analysés à des concentrations proches des valeurs limites de quantification du laboratoire et donc non significatives d'un impact.
- Concentrations en BTEX et COHV inférieures aux limites de quantification du laboratoire.

Sur éluât

• Absence de concentration dépassant les seuils d'acceptation en ISDI pour l'ensemble des paramètres.

Pollutions identifiées

- L'ensemble des investigations réalisées ne met pas en évidence de zone de pollution concentrée. Les seules anomalies détectées sont soit à des concentrations proches des limites de quantification du laboratoire et donc non significatives d'un impact, soit présentes sous couverture de terre végétale sans anomalie.
- Aucun composé volatil n'a été mis en évidence au droit du site.

Gestion des déblais hors site

 Les résultats des investigations mettent en évidence l'absence de matériaux non inertes au regard de l'arrêté du 12/12/2014. Aussi, en cas d'évacuation hors site des matériaux excavés, sur la base des critères d'acceptation des filières de traitement et de leurs caractéristiques physico-chimiques, les filières d'élimination identifiées envisageables sont les suivantes :

⊠ ISDI □ I	SDI+ □	ISDND [∃ Biocentre	\boxtimes	Valorisation
------------	--------	---------	-------------	-------------	--------------

3.3 Interprétation des analyses sur les eaux souterraines

Les résultats d'analyses mettent en évidence la présence d'anomalies en métaux ainsi que la présence de traces HCT C10-C40 dans les eaux souterraines au droit du site :

- dépassement des valeurs de référence pour l'eau potable pour le chrome (Pz4 aval), le plomb (Pz4 et Pz5 – amont) et le nickel (Pz4). Les concentrations mesurées sont inférieures aux valeurs de référence des eaux brutes (annexe II de l'arrêté du 11/01/07), hormis pour le chrome avec une concentration restant toutefois du même ordre de grandeur;
- Présence d'anomalies en hydrocarbures au droit de PZ4 (aval) et PZ5 (amont) avec des concentrations limitées au regard de la valeur de référence considérée (1 000 μg/l pour des concentrations respectives de 200 et 130 μg/l). Ces hydrocarbures présentent majoritairement des fractions lourdes et sont donc peu ou pas volatiles (supérieur à C16);
- Absence de détection des autres composés analysés (HAP, BTEX, COHV).

<u>Remarque</u> : le constat d'incertitudes sur les conditions de prélèvements peut poser la question de la qualité des résultats obtenus.

3.4 Synthèse des impacts dans les différents milieux

Impacts identifiés dans les sols	Impacts identifiés dans les eaux souterraines	Cohérence source-impact	Cohérence entre les différents milieux	Recommandations relatives à ces impacts
Présence d'anomalie ponctuelles en métaux dans les arènes granitiques, recouvertes de terres végétale sans anomalie.	Présence d'anomalies en métaux et de traces d'hydrocarbures.	La source des anomalies sur les eaux souterraines n'est pas identifiée.	Absence de lien clair entre les anomalies identifiées dans les sols et dans les eaux souterraines.	Sols: En cas d'évacuation hors site des matériaux excavés, ces derniers pourront être acheminés vers une ISDI. Eaux souterraines: Compte-tenu de la présence d'anomalies, d'incertitudes sur les conditions de prélèvement et en l'absence de la connaissance de l'origine des anomalies observées, il est recommandé la réalisation d'un suivi complémentaire avec respect de la méthodologie adaptées (notamment utilisation d'une pompe et non d'un bailer, renouvellement effectif de 3 à 5 fois le volume du piézomètre, etc.).

4. Schéma conceptuel

Informations sur le site	 Intitulé/adresse du site : Nouvel établissement pénitentiaire – Zone Artisanale de Chapeau Rouge – 56000 Vannes ; Superficie totale : environ 15,4 ha ; Propriétaire actuel : Villes de Vannes ; Usage actuel : Absence d'usage (prairies et zones arborées). 		
Projet d'aménagement	Construction d'un établissement pénitentiaire de 550 places sans niveau de sous-sol, au nombre d'étages inconnu et comprenant également des bâtiments annexes, des espaces verts et des voies carrossables.		
Géologie et hydrogéologie	Géologie: Terre végétale sur 0,1 à 0,5 m; Substratum granitique au-delà. Hydrogéologie: Présence de 2 compartiments aquifère: nappe superficielle rencontrée dans les altérites du socle. Cette nappe est alimentée par les eaux de pluie et son sens d'écoulement est généralement lié à la topographie (vers le sud-ouest au droit du site). Le niveau des eaux souterraines dans cet aquifère est attendu à faible profondeur (niveaux mesurés entre 2 et 7,5 m au droit du site); nappe du socle rencontrée dans les fractures et fissures des formations granitiques. Il s'agit d'une nappe discontinue dont l'extension se limite à la faveur des axes principaux de fracturation.		
Impacts identifiés	Absence d'impact identifié. Présence uniquement d'anomalies ponctuelles en métaux dans les sols sous couverts de terre végétale sans anomalie et d'anomalies en métaux et hydrocarbures dans les eaux souterraines.		
Enjeux à considérer	Les enjeux à considérer sur site sont les futurs travailleurs et détenus (adultes) Des visiteurs adultes et enfant peuvent aussi être présents sur site occasionnellement.		
Voies de transfert depuis les milieux impactés vers les milieux d'exposition	D'après les résultats d'analyses obtenus, aucun impact n'a été identifié. En outre, les anomalies ponctuelles mesurées dans les sols sont dans des formations recouvertes par de la terre végétale sans anomalie et aucun usage des eaux souterraines n'est identifié sur site. Ainsi, aucune voie de transfert n'est à considérer. Par conséquent, la notion de risque, qui est la concomitance d'une source, d'une cible et d'un vecteur n'existe pas. Ainsi, la réalisation d'un schéma conceptuel n'est pas nécessaire.		

5. Synthèse et recommandations

Dans le cadre du marché d'Assistance à Maîtrise d'Ouvrage « Études de sol » de l'APIJ, dont GINGER CEBTP est mandataire et a en charge l'encadrement des investigations et la réalisation des études géotechniques, GINGER BURGEAP a en charge la partie environnementale en tant que co-traitant.

L'APIJ ayant un projet de construction d'un nouvel établissement pénitentiaire d'une capacité de 550 places à proximité de la Zone Artisanale de Chapeau Rouge au nord-est de Vannes (56), GINGER BURGEAP a ainsi réalisé :

- une étude historique, documentaire et de vulnérabilité ayant conclu sur la nécessité de procéder à un programme d'investigations,
- un cahier des charges techniques en vue de la consultation par l'APIJ de prestataires spécialisés,
- l'analyse des offres consécutives à la consultation,
- l'analyse du rapport du prestataire retenu (GEOTEC),
- l'interprétation contradictoires des résultats de GEOTEC.

Le diagnostic de la société GEOTEC a été réceptionné par GINGER BURGEAP le 3 juin 2022.

Les résultats obtenus ont principalement mis en évidence :

- dans les sols, la présence d'anomalies ponctuelles en métaux dans les arènes granitiques, recouvertes de terres végétale sans anomalie;
- dans les eaux souterraines, la présence d'anomalies en métaux et de traces d'hydrocarbures;
- l'absence de terres non inertes au regard de l'arrêté du 12/12/2014.

Au regard des données disponibles, il n'est pas fait de recommandation particulière autre que :

- <u>pour les sols</u>, en cas d'évacuation hors site des matériaux excavés, ces derniers pourront être acheminés vers une ISDI ou valorisés sur site en cas de besoin en remblais dans le cadre de l'aménagement projeté ;
- <u>pour les eaux souterraines</u>, compte-tenu de la présence d'anomalies, d'incertitudes sur les conditions de prélèvement et en l'absence de la connaissance de l'origine des anomalies observées, il est recommandé la réalisation d'un suivi complémentaire avec respect de la méthodologie adaptées (notamment utilisation d'une pompe et non d'un bailer, renouvellement effectif de 3 à 5 fois le volume du piézomètre, etc.).

6. Limites d'utilisation d'une étude de pollution

- 1- Une étude de la pollution du milieu souterrain a pour seule fonction de renseigner sur la qualité des sols, des eaux ou des déchets contenus dans le milieu souterrain. Toute utilisation en dehors de ce contexte, dans un but géotechnique par exemple, ne saurait engager la responsabilité de GINGER BURGEAP.
- 2- Il est précisé que le diagnostic repose sur une reconnaissance du sous-sol réalisée au moyen de sondages répartis sur le site, soit selon un maillage régulier, soit de façon orientée en fonction des informations historiques ou bien encore en fonction de la localisation des installations qui ont été indiquées par l'exploitant comme pouvant être à l'origine d'une pollution. Ce dispositif ne permet pas de lever la totalité des aléas, dont l'extension possible est en relation inverse de la densité du maillage de sondages, et qui sont liés à des hétérogénéités toujours possibles en milieu naturel ou artificiel. Par ailleurs, l'inaccessibilité de certaines zones peut entraîner un défaut d'observation non imputable à notre société.
- 3- Le diagnostic rend compte d'un état du milieu à un instant donné. Des évènements ultérieurs au diagnostic (interventions humaines, traitement des terres pour améliorer leurs caractéristiques mécaniques, ou phénomènes naturels) peuvent modifier la situation observée à cet instant.
- 4- La responsabilité de GINGER BURGEAP ne pourra être engagée si les informations qui lui ont été communiquées sont incomplètes et/ou erronées et en cas d'omission, de défaillance et/ou erreur dans les informations communiquées.
- 5- Un rapport d'étude de pollution et toutes ses annexes identifiées constituent un ensemble indissociable. Dans ce cadre, toute autre interprétation qui pourrait être faite d'une communication ou reproduction partielle ne saurait engager la responsabilité de GINGER BURGEAP. En particulier l'utilisation même partielle de ces résultats et conclusions par un autre maître d'Ouvrage ou pour un autre projet que celui objet de la mission confiée ne pourra en aucun cas engager la responsabilité de GINGER BURGEAP

La responsabilité de GINGER BURGEAP ne pourra être engagée en dehors du cadre de la mission objet du présent mémoire si les préconisations ne sont pas mises en œuvre.